3.155 \(\int \frac{(b \sec (c+d x))^{5/2}}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=35 \[ \frac{b^2 \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{b \sec (c+d x)}}{d} \]

[Out]

(b^2*Sqrt[Sec[c + d*x]]*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.011894, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {17, 3767, 8} \[ \frac{b^2 \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{b \sec (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[(b*Sec[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(b^2*Sqrt[Sec[c + d*x]]*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m + 1/2)*b^(n - 1/2)*Sqrt[b*v])/Sqrt[a*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{(b \sec (c+d x))^{5/2}}{\sqrt{\sec (c+d x)}} \, dx &=\frac{\left (b^2 \sqrt{b \sec (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{\sqrt{\sec (c+d x)}}\\ &=-\frac{\left (b^2 \sqrt{b \sec (c+d x)}\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d \sqrt{\sec (c+d x)}}\\ &=\frac{b^2 \sqrt{\sec (c+d x)} \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.0309176, size = 32, normalized size = 0.91 \[ \frac{\sin (c+d x) (b \sec (c+d x))^{5/2}}{d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Sec[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

((b*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(d*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.127, size = 39, normalized size = 1.1 \begin{align*}{\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{d} \left ({\frac{b}{\cos \left ( dx+c \right ) }} \right ) ^{{\frac{5}{2}}}{\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x)

[Out]

1/d*(b/cos(d*x+c))^(5/2)*cos(d*x+c)*sin(d*x+c)/(1/cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.06034, size = 73, normalized size = 2.09 \begin{align*} \frac{2 \, b^{\frac{5}{2}} \sin \left (2 \, d x + 2 \, c\right )}{{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

2*b^(5/2)*sin(2*d*x + 2*c)/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.63597, size = 84, normalized size = 2.4 \begin{align*} \frac{b^{2} \sqrt{\frac{b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

b^2*sqrt(b/cos(d*x + c))*sin(d*x + c)/(d*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (b \sec \left (d x + c\right )\right )^{\frac{5}{2}}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c))^(5/2)/sqrt(sec(d*x + c)), x)